

Dirbtinės saulės sukūrimas Žemėje ir elektros gamyba.

Egidijus Urbonavičius Lietuvos energetikos institutas

LIETUVOS ENERGETIKOS INSTITUTAS

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Branduolių sintezė

Saulė ir žvaigždės šviečia dėl branduolių sintezės reakcijų, vykstančių jose.

Ar mes galime atkartoti šį milžinišką energijos šaltinį Žemėje?

Branduolių sintezė kaip energijos šaltinis

Susijungusių atomų suma yra mažesnė už ją sudarančių atomų masę. Kur dingo masė?

Iš žymiosios Alberto Einšteino formulės matome, kad masė pavirsta energija:

E=mc²

Kitais žodžiais: Energija = masė x šviesos greitis kvadratu

Graphic: EUROfusion, Reinald Fenke, CC BY 4.0, www.euro-fusion.org

Branduolių sintezė vs. Branduolių skilimas

Branduolių sintezė

Du maži branduoliai susijungia sudarydami didesnį.

Branduolių skilimas

Vienas didelis branduolys skyla į mažesnius.

$E = mc^2$

Kokia geriausia branduolių sintezės reakcija Žemėje?

Saulėje vandenilio (H) branduoliai susijungia sudarydami Helio branduolį (He).

Žemėje efektyviausia yra naudoti du vandenilio izotopus:

- Deuterį (D)
- Tritį (T)

Kokia geriausia branduolių sintezės reakcija Žemėje? 🔘

Branduolių sintezei Žemėje reikalinga plazma

Plazma yra labiausiai paplitusi medžiagos būsena visatoje. Ji sudaro 99% visos matomos medžiagos.

Branduolių atostūmio jėgai nugalėti reikia 150 millijonų laipsnių temperatūros. Deuteriotričio sintezės reaktoriuje medžiagos būsena yra **plazma**.

Image 1: prominence on the Sun, By NASA Goddard spaceflight center [public domain], via Wikimedia Commons. Image2: ITER Organization, www.iter.org Image 3: By Carsten (Flickr: Polarlicht-Reise 2013 - Tag09 - 22) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons

Keturios medžiagos būsenos

Kaitinant kietą medžiagą ji lydosi ir tampa skysta. Kaitinant skystį jis tampa dujomis. Kaitinant dujas jos tampa plazma.

Graphic: EUROfusion, Reinald Fenke, CC BY 4.0, www.euro-fusion.org

Link tvarios branduolių sintezės reakcijos

Siekiant pradėti branduolių sintezę būtina vienu metu:

Būtina gerai suprasti **plazmos fiziką**.

Išvengti plazmos šilumos praradimo

EUROfusion, CC BY 4.0, www.euro-fusion.org

Plazmos išlaikymas yra esmė

Images(left to right): NASA, CCFE, green picture replace with https://en.wikipedia.org/wiki/National_Ignition_Facility#/media/File:Preamplifier_at_the_National_Igni tion_Facility.jpg, image: Lawrence Livermore National Laboratory, CC BY-SA 3.0, http://tinyurl.com/hj7qvan

Žvaigždės yra masyvios ir jos priklauso nuo

Gravitacinio išlaikymo Žemėje natūraliomis sąlygomis branduolių sintezė nevyksta, todėl daugiausia remiamasi dviem būdais:

Magnetinis išlaikymas Inercinis išlaikymas

Magnetinio išlaikymo branduolių sintezė

Plazma suspaudžiama ir jos dalelės sukasi aplink **magnetinio** lauko linijas, o elektrinis laukas jas kaitina

Tankis labai mažas: 250 tūkstančių kartų mažesnis už žemės atmosferą

Išlaikymo laikas yra ilgas: >sekundes

Daug žadanti magnetinio išlaikymo koncepcija

Tokamako pagrindai

Jis sudarytas iš

Matalinio korpuso plazmai išlaikyti

Magnetinio lauko ričių, kurios

- nukreipia plazmos daleles
- plazmoje generuoja elektros srovę
- Išlaiko plazmos formą

Branduolių sintezės progresas

ITER Galios atgavimas: $P_{fusion} = 10 \times P_{in}$

Parodyti techninius principus

JET (ir kiti įrenginiai) galios balansas:

P_{fusion} = P_{in} Pagrindinis tikslas – mokslinis supratimas

Preliminarus grafikas ir pagrindiniai įrenginiai

EUROfusion

EUROfusion

30 mokslinių tyrimų institutų ir 150 universitetų 28 Europos šalys dirba kartu siekdami bendro Branduolių sintezės kelrodžio tikslo: Elektra, pagaminta branduolių sintezės elektrinėje

Branduolių sintezės kelrodis

Pademonstruoti elektros gamybą branduolių sintezės elektrinėje prasidėjus antrai šio amžiaus pusei

- Remiasi techninio įvertinimo ataskaitomis
- Parodo nuoseklią ES programą, turinčią aiškų tikslą
- Be neužbaigtų mokslinių tyrimų
- Išleista 2018 rugsėjį

Branduolių sintezės kelrodis

- Šis kelrodis yra pagrindas programos, kuri
 - Prisideda prie ITER sėkmės ir jo rezultatų efektyvaus panaudojimo
 - > Aprašo kelią link licencijuotos elektros gamybos DEMO elektrinėje
 - Aprašo viziją po DEMO (pramonės pasirengimas)
 - Įvertina atsargines strategijas
 - Gali būti taikoma nustatant mokslinių tyrimų prioritetus

Branduolių sintezės kelrodis

ITER rezultatų pritaikymas DEMO - pavyzdžiai

Kelrodžio misijos

Tokamak įrenginiai

Misijos 1 ir 2: Plazmos scenarijai

Kelrodžio misijos

Plazmos veikiamų komponentų bandymai

Devices to study the behaviour of plasma facing components

World record exposure in MAGNUM-PSI

T. Morgan, PFMC 2019 M. Balden, PFMC 2019

ITER relevant conditions (~1 Full Power Year):

Target1200 C°Heat load20 MWm-2Particle load1.5 1025 particles m-2s-1Duration:18,5 hours

Plasma Exhaust – newly funded upgrades

Upper divertor in ASDEX-Upgrade

JULE-PSI and JUDITH-3

Baffles and cryopump in TCV

NBI and Divertor diagnostics for MAST-Upgrade

Actively-cooled divertor in WEST

Roadmap Missions

High Heat Flux Materials

Cu-W(fiber) composite tubes

W-W(fiber) composite

Ductile tungsten

Refractory Materials for DEMO Divertors

In close cooperation with Plansee company

Hot-rolled, coarse-grained W Test temperature: RT

Severely cold-rolled, ultrafine-grained W; Test temperature: RT

\rightarrow Severe cold-rolling makes W ductile

J. Reiser et al., Int. J. Refract. Met. Hard Mater. 64 (2017) 261–278

IFMIF-DONES

Roadmap Missions

Roadmap Missions

European DEMO concept is not decided!

- Close enough to ITER (science & technology) – reduce risk, use ITER experience*
- Close enough to a power plant to enable industry – reduce risk
- Pick a starting point
- Seek integrated evidencebased concept
- Adapt as needed
- Include test zones in DEMO to increase technology output

* examples in back-up slides

Missions 4-6: DEMO – plasma to grid

Full set of interconnected activities

- Consistent plasma (pulsed has advantages)
- Breeding blanket (options)
- Divertor and main chamber plasma facing components
- Containment: vessel, cryostat, buildings
- Balance of plant: heat exchangers, turbines, storage
- Reliable control
- Heating and current drive
- Tritium, fuelling, pumping
- Remote maintenance: design
 driver
- Safety, environment, waste, recycling
- Materials: structural, functional

Integration, integration, integration

Missions 4-6: DEMO – plasma to grid

Preliminary DEMO Plant Layout

Roadmap Missions

Mission 7: Cost of electricity

Challenges & opportunities for DEMO, FPPs

- plant and organisation complexity and interactions:
- shorter design cycle (computers!)
- increased availability (radical remote maintenance?)
- advanced plasmas, magnets,
 blankets/thermal cycles, materials
- advanced manufacturing and "design for manufacture"

Approach

- Identify cost drivers for DEMO and possible power plants
- Holistic approach to whole plant, whole lifetime, supply chain

Mission 7: Cost of electricity

Challenges & opportunities for DEMO, FPPs

- plant and organisation complexity and interactions:
- shorter design cycle (computers!)
- increased availability (radical remote maintenance?)
- advanced plasmas, magnets, blankets/thermal cycles, materials
- advanced manufacturing and "design for manufacture"

Approach

- Identify cost drivers for DEMO and possible power plants
- Holistic approach to whole plant, whole lifetime, supply chain

Advanced manufacturing

Roadmap Missions

Mission 8 - Stellarators

Wendelstein 7-X: 5.5m helias stellarator

2018: Record triple product for stellarators

Mission 8 - Stellarators

Wendelstein 7-X: 5.5m helias stellarator

> 30s pulse with detached island divertor (APS 2018)

Branduolių sintezės spinofai

Nors pramonė pradės statyti branduolių sintezės elektrines tik už dešimtmečių, tačiau jau dabar gali turėti tiesioginės naudos:

Bruker Health Superconducting cables employed for Medical Resonance Imaging. Yearly turnover ~1 billion	Materials sciences A technique pressing metal sheets into the desired shapes. Today, the company '3D Metal Forming' delivers sophisticated cockpit shapes to the aeronautics industry.
Wikimedia Environment Wikimedia Palladium alloy membranes developed for cleaning up fusion waste effectively treat effluents from chemical and automobile industries	Remote Handlingused in EUROfusion's JET Tokamak:Applied to high-energy physics, space science, nuclear decommissioning, and modern surgical methods

Santrauka

- Branduolių sintezės kelrodis pristato išsamų įrodymais grįstą mokslinių tyrimų planą
- Programa siekia padėti ITER sėkmei ir nukreipti DEMO projekto pasirinkimus
- Pateikia bazinį DEMO projekto variantą, kuris reikalingas identifikuoti ir išspręsti projekto integravimo klausimus.
 - Sukurtas karkasas leidžia ateityje nagrinėti ir alternatyvias koncepcijas
- Pagrindinis tikslas pradėti gaminti elektrą branduolių sintezės elektrinėje kaip galima greičiau
- Kuriamos technologijos leidžia kartu atsirasti ir spinofams, kurie gali rasti pritaikymą visiškai kitose gyvenimo srityse.

fusion.org/eurofusion/roadmap/

https://www.euro-

